Ja n 20 02 Normal contractive projections preserve type

نویسنده

  • Bernard Russo
چکیده

Given a JBW*-triple Z and a normal contractive projection P : Z −→ Z, we show that the (Murray-von Neumann) type of each summand of P (Z) is dominated by the type of Z.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contractive Projections on Banach Spaces

Increasing sequences of contractive projections on a reflexive LP space share an unconditionality property similar to that exhibited sequences of self-adjoint projections on a Hilbert space. A slight variation of this property is shown to be precisely the correct condition on a reflexive Banach space to ensure that every operator with a contractive AC-functional calculus is scalar-type spectraL

متن کامل

m at h . FA ] 1 0 Ja n 20 02 EXTENSIONS OF WEAK - TYPE MULTIPLIERS

In this paper we prove that if Λ ∈ M p (R N) and has compact support then Λ is a weak summability kernel for 1 < p <

متن کامل

Ja n 20 02 GENERATORS OF NONCOMMUTATIVE DYNAMICS

For a fixed C∗-algebra A, we consider all noncommutative dynamical systems that can be generated by A. More precisely, an Adynamical system is a triple (i, B, α) where α is a ∗-endomorphism of a C∗-algebra B, and i : A ⊆ B is the inclusion of A as a C∗-subalgebra with the property that B is generated by A∪α(A)∪α(A)∪ · · · . There is a natural hierarchy in the class of A-dynamical systems, and t...

متن کامل

Ja n 20 02 The Kink variety in systems of two coupled scalar fields in two space - time dimensions

In this paper we describe the moduli space of kinks in a class of systems of two coupled real scalar fields in (1+1) Minkowskian space-time. The main feature of the class is the spontaneous breaking of a discrete symmetry of (real) Ginzburg-Landau type that guarantees the existence of kink topological defects.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002